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In this paper, a three dimensional numerical modeling of an optically controlled nanoscale FinFET considering quantum 
mechanical effects has been theoretically examined and analyzed. The device characteristics are obtained from the self-
consistent solution of 3D Poisson-Schrödinger equation using WKB (Wentzel Kramers Brilloin) interpolation-Wavelet 
method. This method provides more accurate results by dynamically adjusting the computational mesh and scales the CPU 
time linearly with the number of mesh points using oscillating interpolation derived from WKB asymptotics, hence reducing 
the numerical cost. The results obtained for dark and illuminated conditions are used to examine the performance of the 
device for its suitable use as a photodetector. 
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1. Introduction 
 

The photosensitivity and the integrated circuit 
compatibility of Field-Effect Transistors (FETs) have 
extended potential of these devices for their use as 
photodetectors. Among the FETs configuration, Metal 
Semiconductor Field Effect Transistor (MESFET) and 
High Electron Mobility Transistor (HEMT) have been 
studied theoretically as well as experimentally by several 
workers for various optically-controlled applications [1-5]. 
A three dimensional modeling of a nano MISFET 
photodetector without including quantum mechanical 
effects [6] has been reported. A transition from bulk to 
multiple-gate fully depleted (FD) silicon-on-insulator 
(SOI) offers drive current and better short-channel 
immunity [7]. CMOS designs below 0.1μm are severely 
constrained by SCE and gate insulator tunneling [8-
11].One of the approaches to circumvent the gate 
tunneling restriction is to change the device structure so 
that the MOSFET gate length can be further scaled even 
with thicker oxide. Double-gate MOSFET (DGFET) is one 
of the most promising devices for channel length in the 
range 10-30 nm [12-15]. The alignment of the top and 
bottom gates to each other and to source/drain (S/D) 
doping is crucial to device performance, because 
misalignment may cause extra gate-to-S/D overlap 
capacitance as well as S/D series resistance [16].In order 
to optimize the performance of double gate devices, self-
aligned processes and structures are proposed, with 
FinFET being one of the most promising [17-21]. The 
FinFET is a symmetric three-gate structure, which means 

that all its three gates have the same work function and 
also at the same potential. This three dimensional (3-D) 
structure requires 3-D analysis. The potential variation in 
the channel used to calculate the subthreshold current and 
threshold voltage of FinFETs with doped and undoped 
channels has been reported [22]. Two dimensional (2-D) 
models can only be used to study the operation of the 
device along certain plane sections of the channel. An 
analytical model based on 3-D analysis for an undoped 
channel has been reported [23].El Hamid et al., [24] 
presented the 3-D analytical modeling including mobile 
charge term. W. Yang et al., [25] reported the scaling 
theory of FinFET by 3-D analytical solution of Poisson’s 
equation in channel region. The existing literatures 
reported on analytical modeling have shown the 
complexity in evaluating various device characteristics 
including QM effects. In addition, it has been found that 
many assumptions and approximations have to be 
incorporated while the device is analytically modeled. 
Quantum mechanical modeling is important for many 
reasons, e.g., the tunneling current through ultra-thin gate 
oxide adds to the low limit of the off-state current [26].In 
FinFET devices, quantum effects and non-equilibrium, 
ballistic or near-ballistic transport has large impact on 
device performance [26]. For channel length comparable 
to the carrier scattering length, carriers transport 
ballistically. The inversion layer thickness cannot be 
treated same along the channel [26]. An analytical charge 
model based on self-consistent solution of Poisson’s and 
Schrödinger equation for 3-D FinFETs is carried out [27]. 
A ballistic quantum-mechanical simulation using CBR 
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(Contact Block Reduction) method to investigate the 
behavior of 10nm FinFET device is reported [28].Double-
gate FinFET devices with symmetric and asymmetric 
poly-silicon gates have been fabricated [29]. FinFET is 
developed with special emphasis on process simplicity and 
compatibility with conventional CMOS technology [30].A 
simple capacitive model was proposed by [31] to predict 
the relationship between DIBL and S swing. N. Ben 
Abdallah proposed the modeling of ballistic quantum 
transport in nanostructures using the decomposition of the 
wave function with reduced simulation time [32].A 
numerical scheme for the 1-D Schrödinger equation used 
to simulate a resonant tunneling diode uses the oscillating 
interpolating function from WKB asymptotic [33]. A 3-D 
quantum simulation of silicon nanowire transistors with 
the effective mass approximation using mode space 
approach producing high computational efficiency is 
proposed [34]. In this paper, a 3D numerical model for n-
channel nanoscale FinFET photodetector including QME 
has been developed and presented. The prime focus is to 
obtain the device characteristics, considering QM effects 
by numerically solving the 3D Poisson- Schrödinger 
equations using Wavelet and WKB approximation until 
self-consistency is achieved. The WKB approximation is a 
more efficient method for approximation of the device 
parameters. When solving the Poisson-Schrödinger 
equations with standard finite element or finite difference 
methods require a large number of grid points thus 
increasing unnecessarily the numerical cost. The basic idea 
of this method is that rather than using polynomial 
interpolation functions, oscillating interpolation functions 
provided by WKB approximation are used. This reduces 
the numerical cost of the simulation and produces more 
accurate results with much coarser grids. This method 
provides a very good performance in terms of CPU time 
savings and fast convergence, since at each step; the 
evaluation of grid refinement does not require 
computations introducing significant overhead. 
 
 

2. Physics based modeling 
 

The general FinFETs structure is shown in Fig.1. The 
following are the geometrical parameters. 
 

 i) Gate Length (Lg): The physical gate length of FinFETs, 
defined by spacer gap. 
       ii) Fin Height (Hfin): The height of silicon fin, defined 
by the distance between the             
            top gate and buried oxide layer (BOX). 
       iii) Fin Width (Tfin): The thickness of silicon fin, 
defined between the front and back  
             gates. 
       iv) Top gate thickness (Tox1): The thickness of the top 
gate oxide. 
       v) Front or back gate thickness (Tox2): The thickness 
of the front or back gate oxide. 
       vi) Channel Length (Leff): The channel length is 
estimated by the metallurgical junction    
             for abrupt junctions.   
       Geometrical channel width defined as W=2x Hfin + 
Tfin. 
 

 
 

Fig. 1. Schematic diagram of FinFET. 
 
 

Obviously, when Tfin is much larger than Hfin or when 
top gate oxide is much thinner than the front and back 
oxides, FinFET can be treated as single-gate fully depleted 
SOI MOSFET (FDFET) as long as the silicon fin remains 
fully depleted [23]. When Hfin is much larger than Tfin or 
top gate oxide (Tox1) is much thicker than the front and 
back oxides (Tox2), FinFET can be treated as DGFET 
[23].It is difficult to assume a simple potential distribution 
because of its asymmetric 3-D structure. The electrostatic 
potential in the subthreshold region can be described by 
the 3-D Poisson’s equation. 
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where ),,( zyxU  is the surface potential at a particular 
point ),,( zyx , ),,( zyxNa  is the uniform channel 
doping concentration, q is the electronic charge, εs is the 
permittivity of silicon ),,( zyxn  is the electron 
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excess carriers generated per unit volume. 
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Based on the Fermi-Dirac statistics, the electron 
concentration can be expressed as  
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where ),,( zyxψ is the wave function and kF is the 
Fermi-Dirac integrals of order k. These integrals are 
defined as 
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The six boundary conditions are set by the top gate, 

front gate, back gate, source, and drain and buried oxide 
(Fig.1). The buried oxide is assumed to be thick enough 
that any finite potential across the buried oxide leads to a 
negligible electric field. The boundaries between gate 
oxide and silicon fin are eliminated by replacing the 
physical dimensions with effective dimensions. The whole 
region is treated as homogenous silicon with effective 
thickness (Teff), effective channel length (Leff) and 
effective height (Heff) [25]. Because, in the short channel 
device, the lateral electric field becomes comparable to the 
normal electric field, the geometrical average method 
should be adopted [23] to reduce errors. These two 
effective parameters are defined by [25] 
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where oxε is silicon-oxide permittivity. With all the 
assumptions and approximations above, the boundary 
conditions are simplified as [25] 
 
Top Gate: 

.fbgHy VVU
eff

−==                    (7) 

 
Front Gate: 

.2/ fbgTz VVU
eff

−=−=                       (8) 

 
Back Gate: 
 

  .2/ fbgTz VVU
eff

−==                                 (9) 

Source: 
 

opbix VVU +==0                                   (10) 
 

Drain: 
 

   opdsbiLx VVVU
eff

++==                       (11) 

 
Bottom gate: 

 
    .fbgHy VVU

eff
−=−=                              (12) 

 
Due to the symmetrical structure in the z direction, the 

buried oxide boundary condition at the bottom 00 =
∂
∂

=yz
U  

is replaced with the bottom gate boundary condition.   
where Vop is the photo induced voltage.                                                    

The excess carriers generated per unit volume due to 
the absorption of incident optical power density are given 
by [6] 
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where mW is the maximum width of the depletion layer 
and is given by 
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where Na is the acceptor concentration. )( xG op
is the 

excess carrier generation rate at any point x in the 
semiconductor and is given by 
 

( )( )( ) y
sim

opt
op eRRR

h
p

xG αα
γ

−−−−= 111)(     (15) 

 
where optP  is the incident optical power density, h  is the 
Planck’s constant, γ  is the operating frequency,α is the 
absorption coefficient of the semiconductor at the 
operating wavelength, sim andRRR , are the reflection 
coefficient at the metal gate entrance, gate-insulator 
interface and the insulator-semiconductor interface 
respectively. 

The mean lifetime of the minority carriers in the 
illuminated condition, lτ  can be written as 

 
 ττ )/( nnn iil Δ+=                      (16) 

 
where τ  is the lifetime of the carriers for the intrinsic 
semiconductor. The characteristics of the device in the 
absence of illumination can be obtained in a similar way 
by substituting Popt=0 in equation (15). 

The photo response drain current is given by 
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)( DARKDDLph III −=                 (17) 
 

The photocurrent gain is given by 
 

Lph IIM /=                              (18) 
 

where IL is the primary current and is given by 
 

AhPqI optL )/( γ=               (19) 
 

The responsivity of the device, R is defined as the 
output current divided by the incident light power  

 
optph PIR /=                              (20) 

 

where phI  is the output current of the photodetector in 

response to light and optP  is the optical power incident on 
the photodetector. 

External quantum efficiency is defined as the number 
of carriers collected by the number of incident photons. 

 
)//()/( γη hPqI optph=                      (21) 

 
where Iph is the photodetector current generated in 
response to incident light, q is the electron charge, Popt is 
the incident optical power in watts, the quantity hγ is the 
energy per photon in joules, where h is Planck’s constant 
and γ is frequency. 

 
Model for quantum mechanical ballistic transport 
 
The 3D effective mass Schrödinger equation along the 

n-channel is given by [26] 
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In the above equation mx

*, my
*, mz

* are effective 
masses in the x, y and z directions. E is the eigen energy, ħ 
is the reduced Planck’s constant, q is the charge of an 
electron U(x, y, z) is the surface potential, ψ(x, y, z) is the 
eigen wave function. 
             By using the variable separation method and 
applying the WKB approximation for ψ in the x-
direction, the value for ),,( zyxψ is equated to 
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By using the above equation, a plane wave solution in 
the x-direction is assumed. The  

3-D Schrödinger equation reduces to two dimensional 
Schrödinger equation [26] as follows 
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The equation (24) can be written as 
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The above equation (25) can be reduced as follows 
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The following notations are used to indicate the x-

dependence.  ),(),( zyzyx φψ = , 
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The 2-D Schrödinger equation (27) is written as 
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The above equation (29) can be written in the form 

)()( xEXxHX =                                                                               
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where H is the Hamiltonian operator and E  is the 
energy-eigen value  

For Quantum model, the above equation takes the 
form  

)()( xXExXH
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Multiplying on both side of equation (35) with )(xψ and 
substituting in equation (30) we get 
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The equation (36) is the one dimensional Schrödinger’s 
equation and can be written as  
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where )()( xxX ψ= and )()( xUxE t =  

In the above equations, mx
* my

*, mz
*

 are the effective 
masses. ),( zyi

xψ is the eigen-wave function and 
i

xtE , is the eigen-energy along a direction. The superscript 

i  is the index of sidebands. The 2-D Schrödinger equation 
is solved for every point along the channel. The electron 

effective mass is different in Si and SiO2 region. To find 
the values of   my

*, mz
* we assume that the channel is 

along [100] direction and there are three set of energy 
valleys in the ky - kz plane with different combinations of 
my

*, mz
*

 and each set has two valleys. For this particular 
case, the two sets of valleys are collapsed into one with 
four valleys. Hence there are two sets of different 
combinations of my

*, mz
*[26]. Fig.2 shows the constant 

energy valleys in k-space for silicon, showing six 
conduction band valleys in [100] direction. The long axis 
of the ellipsoid corresponds to longitudinal effective mass 
of electrons and the short axis corresponds to transverse 
effective mass. For [100] silicon, we have taken two 
longitudinal valleys with

tmm =* and four transverse 
valleys with

tl mmm =* . The above equation (37) is 
solved using open boundary conditions. 
 

 
 

Fig. 2. Equi-energy valleys in k-space for silicon 
 
 

3. Multiresolution analysis and wavelets 
 
For semiconductor device simulation using partial 

differential equations, the grid generation is very 
important. Grid points must be present accurately 
approximate to any physical quantity to be measured. The 
grid layout should be chosen carefully since the 
computational cost grows with the number of grid points. 
The difficulty in semiconductor device simulation is due to 
the different mesh sizes between substrate and doped 
regions. Finer mesh is needed in doped regions and 
junctions and coarse mesh for substrate regions, to reduce 
the number of unknowns and also the simulation time. 
Hence wavelets with MRA concept are used to achieve 
this goal. The Wavelet-Galerkin method uses the finite 
difference method with grid refinement. So, instead of 
letting the magnitude of wavelet coefficients to choose the 
basis function in Galerkin approach, let the same 
coefficients choose which grid points to choose [45].    

MRA is an important concept in wavelet theory. 
Many useful orthonormal wavelets are constructed within 
this framework. In order to give a good explanation of the 
relationship between MRA and wavelet basis, a brief 
summary of Daubechies wavelets are given [46, 47]. The 
usefulness of wavelets for solving partial differential 
equations relies on the definition of MRA. An MRA is 
based on two fundamental concepts: nested subspaces and 
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orthonormal bases. The first decomposes the information 
into different scales; the second allows stable and fast 
algorithms. The space of square integral functions on the 
real line is denoted by )(2 RL . The orthonormal basis of 

wavelets of )(2 RL  is formed by dilations and translations 
of a single function )( xΨ , called a mother wavelet. 

The orthonormal basis of wavelets of )(2 RL  is 
formed by dilations and translations of a single 
function )( xΨ , called a mother wavelet. 
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The function )( xΨ has a companion, the scaling function 
)( xϕ .They both satisfy the following two-scale relation 
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WKB-Wavelet solution for one dimensional  
Schrödinger’s equation  
 
The one dimensional Schrödinger’s equation as given 

in (37) is  
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where mx

* is the effective mass of an electron in the x 
direction. E is the eigen energy, ħ is the reduced Planck’s 
constant, q is the charge of an electron U(x) is the surface 
potential, ψ(x) is the eigen wave function. The 1-D 
Schrödinger equation can be solved using open boundary 
conditions.  

In [39] the authors have presented a WKB scheme 
using the continuous finite element method. Let us assume 
that the nodal values

1, +nn ψψ  at nodes
1, +nn xx of the 

wave function )(xψ are known. Standard linear 
interpolation gives inaccurate solution on a coarse grid for 
a grid Ij. In order to enhance the accuracy on a coarse grid, 
the WKB approximation is used to construct a new 
interpolation function [34]. 
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0x is an integration constant. Equation (42) shows the 

asymptotic behavior of the wavefunction as 0→h  
or ∞→E . This asymptotic has two advantages: it is a 
good approximation not only at higher frequencies but also 
for slowly varying potentials. The wavefunction is the sum 
of two terms, each of them being the product of an 
oscillatory function and a slowly varying one. 
The WKB interpolated function is given by [34] 
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and the amplitude factor  
 

nf  is )(xfn = 4
)(
)(

xUE
xUE n

−
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4 denotes the complex square root with non-negative 
imaginary part. 
For detailed expressions of finding values of 

)(,, xSBA nnn  and )(sU refer [28]. 
Introducing wavelets in equation (46) gives  
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where kjd ,  is the wavelet coefficient. 
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Equation (49) can be simplified into 
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where k=2-M, 3-M… 2j-1 are 2j+M-2 are unknown 
coefficients. j fixes the level of resolution. The larger the 
value of j , the more accurate a solution can be obtained. 
The parameter M represents that the wavelet associated 
with the set of M Daubechies filter coefficients is used as 
a solution bases. 
Substituting the wavelet series approximation )(xΨ  for 

)(xψ in equation (41) yields [48] 
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To determine the coefficient kjd , , we take the inner 

product of both sides of equation with  jnϕ . 
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For simplicity, we define the following notations for 

integrals appearing in equation (53) 
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The equation (53) becomes 
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                     12,...,3,2 −−−= jMMn        
                                                                              

The equation (54) is solved using Cholesky’s 
decomposition method by taking the matrix-vector form of 
the equation and an accurate value of the surface potential, 
U(x) is found. 

 
  

absolute =error || WaveletWKBionexactsolut UU −−    (55) 
 

The drain current ID considering scattering effects is 
given by [25, 27] 
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where ∗= mTKBT πυ /2  is the thermal velocity and is 
independent of the Fermi level. effBeff qTKD μ)/(= is the 

diffusion coefficient. For low dsV , the critical 
length L→l , the channel length. Assuming that only 
the lowest side band is occupied, the effective mass is 

019.0 mmm t ==∗  which gives a thermal velocity 

scmT /102.1 7×=υ .By Mathiessen’s rule 11
0

1 −−− += Beff μμμ  

where 
T

B m
qL
πυ

μ
∗

=  is the ballistic mobility and 

Tm
q
πυ
λμ

∗
=0 is the low field mobility, λ is the mean 

free path, finTW = is the width of the device. 

The subthreshold swing S  is a measure of the gate 
control on the channel. It can be expressed as 

DS

gs

I
V

S
log∂

∂
=  

eff

c

eff

c

b
dby

Sin
a

cax
Sine

S
)()(

21

110ln

11
++

×
++

×Γ−
×=

− ππβ α

                              (57) 
In which β  and α are defined as 
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cx and cy  describe the position of the leakage path in the 

fin cross section. cx could be set to zero due to symmetry, 

while cy is determined by the geometrical features, 
doping concentration, and applied voltages. 
Practically, cy is treated as a fitting parameter. 

Substituting finc Hy = in equation (50) becomes a 

lower limit of subthreshold swing. dsV is set as 0.05 V, 

and the lateral electric field along the channel is moderate. 
Hence, the drift-diffusion is accurate to describe the 
subthreshold conduction in FinFETs [21]. 

The electric field along the x direction is given as [6] 
 

( )

⎟
⎠
⎞⎜

⎝
⎛

−−+
=

x

x

m
L

iUiUE
2

)1(1                  (58)  

 
where mx are the separation of the grid line along the x 
direction. )(iU  is the surface potential at a particular 
point and L is the gate length. 

The transconductance is a partial derivative of drain 
current with respect to the gate-source voltage keeping 
drain-source voltage constant. It is a measure of device 
gain. 
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The threshold voltage (Vth) rolloff is given by [25] 
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dL  is the drain potential decay length, biV is the built-in 

potential, equal to about half of the Si band gap. Equation 
(60) shows that the thV  roll-off is an exponential function 

of
d

eff

L
L

. thV  roll-off caused by DIBL is estimated by the 

necessary gate voltage change in the most leaky path 
( )cc yx , [23]. If the channel furthest away from the gates, 

i.e., 0,2/ == ceffc yTx , is chosen as the most leaky path, 
the sine and cosine terms will be reduced to 1. 
 
 

4. Computational technique 
 
The 3D Poisson’s equation (1) using the boundary 

conditions (7-12) is solved numerically using Leibmann’s 
iteration method to determine the approximate surface 
potential under illumination for a fixed value of gate 
voltage and assumed value of drain voltage. This value of 
surface potential is given to the 3D Schrödinger equation 
(22). The 3-D Schrödinger equation is then reduced to 1-D 
equation using separation of variables and WKB 
approximation. This 1-D Schrödinger equation (36) is 
solved using WKB interpolation–Wavelet method and the 
exact value of surface potential is obtained. The drain 
current can be estimated by numerically integrating the 
equations (56) using Simpson’s one-third rule. The 
subthreshold swing, electric field, transconductance and 
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threshold voltage roll-off values are estimated using 
equations (57,58,59, 60).The results obtained are validated 
with commercial device simulator results. 

 
 Algorithm 
 

1. Assign gate length, channel length, device width, height 
and thickness of silicon.  
2. Apply bias voltages and Popt values . 
3. Determine numerically the surface potential under 
illumination by solving the 3D Poisson’s equation  
     using boundary conditions. 
4. Substitute this surface potential value in the 3D 
Schrödinger’s equation. 
5. Reduce 3-D Schrödinger’s equation to 1-D equation 
using variable-separation method  
    and WKB  approximation.  
6. Solve 1-D Schrödinger’s equation numerically using 
open boundary conditions. 
7. Estimate the exact value of surface potential at every 
point along the channel length. 
8. Obtain subthreshold swing, drain characteristics, 
Mobility, electrical characteristics. 
 
 

5. Results and discussion 
 
Numerical computation has been carried out for the 

nanoscale FinFET. The parameters used for the calculation 
are given in Table. 1. 
 

Table.1. Parameters and constants 
 

 Parameter Value 

Gate Length (Lg) 60 nm 
Top gate oxide 
thickness (Tox1) 

5 nm 

Front (or) back gate 
thickness (Tox2) 

1 nm 

Channel Length (Leff) 60 nm 
Thermal Voltage (VT) 0.025852 V 
Intrinsic carrier 
concentration (ni) 

9.65 x 109/cm3 

Acceptor 
concentration (Na) 

1 x 1016/ cm3 

Flatband voltage (Vfb) -0.48 V 
Built-in potential (Vbi) 0.6 V 
Gate voltage (Vg) 0.2V 

  
Fig.3.shows the potential profile of the FinFET 

including QM effects obtained using WKB interpolation-
Wavelet method on a grid of 20 x 13 x 10 points is 
compared with the reference solution obtained from 
DAVINCI simulator (broken line). The surface 
potential )(xU is calculated for different values of x .The 
WKB interpolation-Wavelet method shows good 
agreement with the reference values and gives more 
accurate values due to quantum mechanical effects. The 
results are validated with DAVINCI results for VDS=1.5V 
under dark condition. The surface potential values under 

illuminated conditions are calculated for Popt=0.5W/m2 and 
VDS=1.5V. It is also found that the surface potential 
increases with illumination. This is due to the fact that 
excess carriers generated due to illumination increases the 
conductivity of the channel. Fig.4.shows the three 
dimensional surface potential of nanoscale FinFET along 
channel length and device width including quantum 
mechanical effects for Vds=0.8V. The device width is 
taken to be equal to channel width (W). The S-factor, 
which is a measure of the subthreshold behavior of the 
device, is extracted from the Ids-Vgs characteristics of the 
FinFET device. The S-factor for various channel lengths 
and fin thickness for a constant fin height are obtained 
from the device simulation and shown in Fig.5.The 
calculated subthreshold swing (S) is 71.56mV/dec at Vds = 
1.5V. This is due to the fact that the punch-through is 
successfully interrupted by the thin body of FinFET. It is 
found that the S-factor increases exponentially with 
decreasing channel length. It is also found that the 
subthreshold swing increases with illumination. From 
Fig.6 it is observed that as the finH  is increased from 20 to 
100 nm, the saturation of S  is observed [23]. The 
critical finH  needed for saturation is different for devices 
with different finT  [23]. In Fig.7, S  changes more rapidly 
as finT  changes from 10 to 60 nm, the rate of change 
increases initially and then slow down. At high dsV  values, 
the electric field will increase at the back surface 
compared to the top surface. The position of the most 
leaky path is highly dependent on the channel doping, gate 
bias and device geometry. For the case of undoped channel 
and deep subthreshold operation, the device geometry is 
the dominant variable. The closer the channel path to the 
gate, the more source barrier is reduced by the gate, while 
for the channel away from the gate, the more source 
barrier is reduced by the source/ drain potential [23]. If the 
source/drain potential penetration is the dominant factor in 
determining the source barrier, the most leaky path will be 
the channel path away from the gate. The source/drain 
potential includes the built-in potential, biV  and applied 
drain bias, dsV [24].   

 
 

 
 

Fig. 3. Three dimensional potential variation along the 
channel length under dark and illuminated conditions.  
Vg = 0.2V, Hfin = 60nm, Tfin = 20nm, Leff = 60nm, 
VDS=1.5V.  The  dotted  lines  show  DAVINCI  simulated  
                              values at Vds = 0.8V [18]. 
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Fig. 4. Surface potential distribution along the channel 
length and device width for VDS=0.8V, Popt=0.5W/m2. 

 
 
 

 
 
 

Fig. 5. Subthreshold swing along channel length for 
various Tfin values at Hfin= 60nm and VDS=1.5V, 

Popt=0.5W/m2. 
 

 

 
 

Fig. 6. Subthreshold Swing for different Tfin values, 
Leff=60nm, VDS=1.5V, Popt=0.5W/m2. 

 

 
 

Fig.7. Subthreshold swing for various Hfin values, 
Leff=60nm, VDS=1.5V, Popt=0.5W/m2. 

  
The simulated gsd VI −  characteristics are shown in 

Fig. 8 & 9. The drain current normalized by the channel 
width W at the same gsV  is almost independent of finH  

while fixing finT  . The small differences in the normalized 

drain current with same finH  and different finT  come from 

the threshold voltage roll-off due to increase in finT [23]. 

The normalized drain current of FinFET with 10nm finH is 

almost twice that of FinFET with 30nm finH  [23]. 

Depending on the relative ratio of finT  to finH , either one 
of these two parameters can be the dominant parameter 
controlling the short channel effects (SCE) of FinFET. For 
a given effL , changing the dominant parameter will lead to 

big changes in thV roll-off and subthreshold swing (S) 
values, while changing the nondominant parameter will 
result in small changes or almost no changes. This is 
because the channel is controlled by two gates on the sides 
while only one gate on the top and no gate at the bottom. 
In both cases, the effect of illumination increases the drain 
current.   

 
 

Fig. 8. Id –Vgs characteristics of FinFET for various Tfin 
values, Popt=0.5W/m2 . 

 

VDS=0.5, 1, 1.5V 
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Fig. 9. Id –Vgs characteristics of FinFET for various Hfin 

values, Popt=0.5W/m2. 
 
 

The Id-Vd characteristics of nanoscale FinFET are 
shown in Fig.10. It shows that the subthreshold leakage 
current is well suppressed even at low doping 
concentration (1x1016 cm-3). It is also found that there is no 
kink effect, which is produced due to floating body. It is 
shown that for the applied gate-to-source voltage, the drain 
current also significantly increases. The channel width is 
determined by applied gate-to-source voltages. The charge 
carriers pass through the channel and hence the conduction 
takes place. When the drain voltage is further increased, 
more charge carriers try to pass through the channel, 
resulting in an increase in drain current. But these charge 
carriers passes through the channel width that is created 
earlier. Hence the drain current saturates after a certain 
limit even if the drain voltage is increased further. The 
drain current under illuminated condition is higher than 
dark condition due to generation of excess carriers under 
illumination.         

 
 

Fig. 10. Drain current characteristics of FinFET for 
various Vgs values. Tfin=20nm, Hfin=60nm, Popt=0.5W/m2. 

 
 

The transconductance with the applied gate-to-source 
voltage, for Vds=1.5V is shown in Fig.11. Due to the 
applied voltage and excess carrier generation, photo 

voltage is induced in the channel. This induced 
photovoltage decreases the transconductance of 
photodetector under illumination along the channel.  

 

 
 

Fig. 11. Transconductance for Tfin=20nm, Hfin=60nm, 
Vds=1.5V, Popt=0.5W/m2. 

 
 

The distribution of electric field along the channel 
length is depicted in Fig.12.The electric field along the 
channel length increases due to QM effects. The electric 
field increases slowly near the source end and rapidly near 
the drain end. This is due to the fact that the carrier density 
near the drain end experiences a rapid decrease in surface 
concentration which calls for a rapid increase in the 
electric field to maintain a constant drain current. It is seen 
that the electric field near the drain end in the illuminated 
condition is less compared to that in the dark condition. As 
a result a high drain voltage is needed to attain saturation 
in the illuminated condition. When the device gets 
illuminated, more and more electron hole pairs are 
generated and more crowded. This reduces the mobility of 
the charge carriers [6].     

The distribution of mobility of electrons along the 
channel due to scattering effects is shown in Fig.13. It is 
seen that the mobility gets reduced under illuminated 
condition in comparison with the mobility under dark 
condition. As more charge carriers are generated under 
illuminated condition, their mobility gets affected as there 
is not much free space for their movement. 
 

 
 

Fig. 12. Electric Field along channel length for 
Tfin=20nm, Hfin=60nm, Vds=1.5V, Popt=0.5W/m2. 

 

VDS=1.5, 1, 0.5V 
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Fg. 13. Mobility distribution along channel length. 
 
 

The variation of photocurrent gain with the incident 
optical power density for constant applied gate voltage and 
drain voltage is shown in Fig. 14. It is seen from the figure 
that the gain decreases with increase in optical power 
density. This is because of the larger change in the primary 
photocurrent with the change in the optical power density 
as compared to the drain photocurrent. 
 

 
 
 

Fig.14. Variation of photocurrent gain for various 
optical power density 

 
 

Fig. 15 & 16 shows the efficiency of the WKB-
Wavelet method by plotting the point wise relative errors 
of the WOFDM & WKB-Wavelet methods with respect to 
the Taurus simulated values (reference solution) for the 
surface potential. The grids are chosen as (20×13×10) for 
both the WOFDM & WKB-Wavelet methods. 
 
 

 
 

Fig. 15. Relative error of the WOFDM method 
(20×13×10 points)  with  the reference solution (Taurus)  
                             for the surface potential. 

 
 

 
 

Fig. 16. Relative error of the WKB-Wavelet method 
(20×13×10 points) with  the  reference solution (Taurus)  
                             for the surface potential. 

 
 

Numerical efficiency 
 
Table.2 shows that different mesh grid points are used 

in the transport direction for the resolution of Poisson- 
Schrödinger equation in order to compute accurate 
solution. For a 20×13×10 mesh the WOFDM method is 
nearly 10 times more accurate than the FDM method with 
considerable reduction in simulation time. The Poisson-
Schrödinger equations are solved on the coarser grid (15 
grid points). Then the results for the finer grids are 
interpolated from the coarse ones. This multi-grid 
procedure enables to use the advantages of WKB 
approximation and Wavelet for obtaining better solution of 
the coupled Poisson-Schrödinger equation with reduction 
in simulation time. The relative error for surface potential 
is computed with reference to the Taurus simulator values. 
The simulation time is the total simulation time. The 
simulation is done using Matlab version 7.0.1 with a 
personal computer using Intel Dual Core Processor. It is 
found that the simulation time and the relative error 
reduces considerably with the WKB-Wavelet method.    
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Table.2. Comparisons of the simulation times & mean relative errors of FDM & WKB-Wavelet for different meshes 

 
No. of grid points in 
x,y,z 

Simulation time 
WKB-Wavelet 

Mean rel. error 
WKB-Wavelet 

Simulation time 
FDM 

Mean rel. error 
 FDM 

20×13 ×10 102s 0.0223 116 s 0.2158 
45 × 32 × 23 642 s 0.0165 712 s 0.1635 
60 × 49 × 34  1568 s 0.0083 1824 s 0.0674 

 
 

Table.3. Comparison of the simulation times & means relative errors of WOFDM & WKB-Wavelet for different meshes 
 

No. of grid points 
 x,y,z 

Simulation Time 
WKB-Wavelet 

Mean rel. error 
WKB-Wavelet 

Simulation Time 
WOFDM 

Mean rel. error 
WOFDM 

20 × 13 × 10 102 s 0.0223 96 s 0.1364 
45 × 32 × 23 642 s 0.0165 543 s  0.0436 
60 × 49 × 34  1568 s 0.0083 1367 s 0.0243 

 
 

Table 3 gives the corresponding simulation times and 
mean relative errors of WOFDM method and WKB-
Wavelet method based on the number of grid points in x, 
y, z directions. We observe that for obtaining 
approximately the same precision, the simulation time is 
reduced significantly with the WKB-Wavelet method 
compared to WOFDM method. An extensive comparison 
of the surface potential values of nanoscale FinFET using 
WKB-Wavelet method shows that it approximates more 
accurately with less number of grid points than the FDM 
and WOFDM methods. Hence the simulation time is 
reduced considerably.  

 
 
6. Conclusions 
 
The WKB-Wavelet method for modeling nanoscale 

FinFET photodetector including quantum mechanical 
effects (QME) shows that the FinFET may retain 
performance acceptable for OEIC receiver applications 
even if the gate length is reduced to nanoscale with 
reduced computation time. It also shows the efficiency of 
the WKB-Wavelet method as compared to WOFDM and 
FDM methods. Accurate results have been obtained with 
significantly reduced computational time.  
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